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ABSTRACT

Advances in aircraft and spacecraft technology demand high-speed and

reliable communications between the individual components and

subsystems for decision-making and control. This can be accomplished

by Integrated Communication and Control Systems (ICCS) which use

asynchronous time-division-multiplexed networks. Unfortunately,

these networks can introduce randomly varying distributed delays.

This paper presents the concept, analysis, implementation, and

verification of a method for compensating delays that are

distributed between the sensor(s), controller, and actuator(s)

within a control loop. With the "objective of mitigating the

detrimental effects of these network-induced delays, a predictor-

controller algorithm has been formulated and analyzed.

Robustness of the delay compensation algorithm is investigated

relative to parametric uncertainties in plant modeling. The delay

compensator has been experimentally verified on an IEEE 802.4

network testbed for velocity control of a DC servomotor. Dynamic

performance of the delay compensator has also been examined by

combined discrete-event and continuous-time simulation of the flight

control system of an advanced aircraft, that uses the Society of

Automotive Engineers (SAE) linear token passing bus for data

communications. The paper is concluded with several areas of future

research in the evolving field of ICCS.
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1. INTRODUCTION

Large-scale dynamical systems, such as advanced aircraft and

spacecraft, require reduction of direct human intervention in

control and decision-making processes and its replacement by

hierarchical levels of automatic control [i] as much as practicable.

In this respect, much effort is being focused on integration of

expert systems, i.e., rule-based procedures, with model-based

algorithms within the control loops. Such a multi-loop, intelligent

control system requires extensive interactions between its disparate

and spatially distributed subsystems and components. Such

interactions, especially when the devices are not collocated, can be

effectively carried out via an asynchronous time-division-

multiplexed data communication network [2]. This concept of Integrated

Communication and Control Systems (ICCS) has already been adopted in

aeronautics and astronautics [3], computer-integrated manufacturing

(C[M) [4], and is being actively pursued for integrated control of

chemical processes [5] and future generation automobiles [6]. A

general concept of how distributed delays are induced by an ICCS

network is illustrated in Figure i-i.

The tasks of decision making, e.g., fault detection, isolation and

reconfiguration (FDIR), at the system level are simplified within

the common network environment of ICCS. The reason is that

monitoring of status and dynamic behavior of the integrated control

system becomes a relatively less difficult task due to availability

1
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of the information that traverses throughout the communication

network. This is of paramount importance in strategic processes like

advanced aircraft and spacecraft. For example, a contingency plan

may be implemented by reconfiguring the system software to

compensate for failures. An additional advantage of using a network

in FDIR is the convenient use of analytical redundancy (i.e.,

analytically deduced measurement(s) of a plant variable) to

supplement the sensory information as well as for identifying common

mode failures [7,8,9]. The above concept is also applicable to

factory automation [I0] in computer-integrated manufacturing (CIM)

and integrated vehicle control systems in future generation

automobiles.

The network traffic in ICCS is heterogeneous in the sense that both

real-time (e.g., flight critical) and some of the non-real-time

(e.g., avionics) functions are likely to share a common data bus.

This would generate aperiodic and possibly random traffic in the

network. The sensor and control signals in ICCS are subjected to

randomly varying distributed delays although the average bus load is

kept well below the saturation level [11-13]. These delays occur in

addition to the sampling time and data processing delays.

Furthermore, the ICCS could be subjected to recurrent loss of data

due to noise corruption in the communication medium and malfunctions

of the network protocol. Therefore, an observable (reachable) system

that assumes availability of sensor (control) data at consecutive

samp!es may become unobservable (unreachable) due to recurrent loss

of data. If the plant is unstable in the open loop as it could be



for highly maneuverable supersonic aircraft, then closed loop

stability requires the system to be detectable and stabilizable.

This is ensured by complete observability and reachability [14].

Recurrent loss of data could render the system undetectable and/or

unstabilizable. Of importantance are the conditions for which this

phenomenon could lead to loss of observability (teachability)

[15,16] and therefore be a source of potential instability. This

subject is discussed in depth in Appendix A.

There are two parallel but complementary approaches to circumvent

the problem of network-induced delays and loss of data:

Approach #1: Selection of a reliable communication protocol that will prioritize real-time
traffic (e.g., sensor and control data for fast loops, and interrupt signals for event
synchronization) by preempting the non-real-time traffic (e.g., aircraft systems operation and
management data). An example is the fiber-optic version of the Society of Automotive
Engineers (SAE) token bus protocol [17] that allows four levels of priority at a transmission
speed of 100 Mbps and a high level of noise immunity. An appropriate protocol and a
carefully designed network would certainly reduce the induced delays and the probability of
data loss but their detrimental effects cannot be c,_mpletely eliminated especially if the dynamic
performance requirements of the control system are stringent or the bus utilization is not

exceedingly low. •

Aooroach #2: Compensation of network-induced delays by: (i) modification of the existing
control systems (that are designed for conventional digital control systems) by updating their
parameters and incorporating additional observers/predictors, or (ii) development of a new
control structure. This approach assumes that the distribution of the network traffic and the
specifications of the access protocol are given, i.e., the statistical characteristics of the
network-induced delays and the probability of data loss are assumed to be known from the
point of view of ICCS design. •

l.l. Benefitsofthe Reported Research

Although significant efforts have been expended for improving the

speed, reliability and other performance of computer networks, and

ample research papers have been published in the areas of modeling

and simulation of computer communication protocols, significance of

network-induced delays and data loss relative to stability of



feedback control systems has not apparently received much

consideration. Therefore, the approach #2 has been adopted in the

reported research to deal with ICCS assuming that the network is

well-designed using the approach #i. ICCS design via a combination

of these two approaches will yield the following advantages:

o Augmentation of operational flexibility and system reliability without increasing the network

and computer hardware redundancy;

o Enhancement of bus utilization, thereby, allowing incorporation of advanced control algorithms

and AI-based decision support systems within the existing network and computer system;

o Robustness of the integrated control system relative to noise, transient traffic, and malfunctions
of the network, and uncertainties and disruptions in plant operation;

o Reconfiguration of the control structure and self-repair (in the event of several unattended

failures) via software migration over the network.

1.2. Summary of Previous Research in ICCS

The potential problem of network-induced delays in ICCS has been

addressed in a sequence of three papers [11-13] under the NASA LeRC

Grant No. NAG 3-823. In the first paper [Ii], a finite-dimensional

model of ICCS is presented by taking into consideration the effects

of network-induced delays. A necessary and sufficient condition for

system stability was established for the special case of

periodically varying (non-random) delays. Attention was focused on

the control loops with identical sampling rates for the sensor and

controller with a time skew _s between the respective sampling

instants. Although this model is more suitable for analysis of

dynamic performance than other infinite-dimensional models [ii], its

application to stability analysis for non-periodically and randomly

varying delays is not straight-forward. The second paper [12]

discusses the issues related to ICCS design with an emphasis on how



_s can significantly contribute to network-induced delays and

distort the control command sequence due to vacant sampling. An

alternative approach, by which vacant sampling can be avoided, is to

deliberately assign non-identical sampling periods T s and T c to the

sensor and controller, respectively. The third paper [13]

specifically addresses finite-dimensional modeling of control

systems that have non-identical sensor and controller sampling rates

and are subjected to randomly varying distributed delays. Criteria

for selection of the sampling ratio Ts/T c were presented for this

special class of multi-rate sampling.

1.3. Contributions of the Technical Report

This report presents the concept, algorithm, and experimental and

simulation results of a delay compensation algorithm for ICCS with

identical sensor and controller sampling rates. The proposed delay

compensator is intended to alleviate the detrimental effects of

network-induced delays by using a multi-step predictor. The key idea

in the compensator design is to monitor the data when it is

generated and to keep track of the delay associated with it. With

this knowledge, an algorithm keeps the delay constant as seen by the

controller. Therefore, the closed loop control system model is

constrained to be finite-dimensional, linear, time-invariant

provided that the plant, observer, and controller are linear time-

invariant. Therefore, this delay-compensated system model is more

suitable for stability analysis of ICCS than the time-varying model

reported in our previous publication [II].

6



The major assumption in the above delay compensation algorithm is

that the (randomly varying) network-induced delays are bounded. This

assumption is justified in view of the fact that unbounded delays

would render the feedback loop open. Using a specified confidence

interval, an upper bound can be assigned to each of these randomly

varying delays. The number of predicted steps in the compensator is

then determined from these bounds, and the compensated system may

use the original control law that was designed for the system

without being subjected to the induced delays. The contributions of

this report are:

o Formulation of the concept of a delay compensation strategy for ICCS;

o Establishment of the separation principle for the multi-step predictor and state-variable

feedback controller;

o Analysis of some of the robustness properties of the delay compensator relative to plant

modeling uncertainties; and

o Implementation of the delay compensation strategy, and its testing by:

- Experimentation with a servomotor control system at a network testbed that employs the

IEEE 802.4 token bus as the medium access control protocol;

- Simulation of the flight control system of an advanced aircraft using an SAE token bus
network.

1.4. Organization of the Technical Report

The report is organized in seven sections and three appendices. The

concept of using an observer for delay compensation and

contributions of other researchers in this field are succinctly

presented in Section 2. The delay compensation algorithm is derived

in a closed loop representation in Section 3. Robustness analysis

relative to modeling uncertainties is presented in Section 4 for a

two-step delay compensator. A description of the experimental

7



facility, details of the experiments, and interpretation of the

experimental results are presented in Section 5. A functional

description of the simulation program and a model of the simulated

flight control system are presented in Section 6 along with a

discussion and interpretation of the simulation results. The report

is concluded in Section 7 with recommendations for future research

to deal with the basic problems of stability analysis and robust

design of the delay-compensated system.

Appendix A presents the concept of extended observability in the

event of recurrently random data loss, followed by pertinent

results. Appendix B provides the supporting materials for proof of

the delay compensation algorithm in Section 3. Stability of the

delay-compensated system in presence of plant modeling uncertainties

is discussed in Appendix C.



2. OBSERVER FOR ESTIMATION OF DELAYED STATES

The sensor, controller, and actuator are assumed to have identical

sampling rates. Furthermore, we assume the sensor and actuator to be

synchronized, i.e., the time skew between their sampling instants is

maintained at zero. Under these conditions, the plant and controller

dynamics of the delayed system at the sample time k are modeled as:

Xk+ 1 = A x k + B Uk_T(k) -plant dynamics with delayed control (2-1)

Yk = C x k -sensor measurement (2-2)

Wk = Yk-A(k) -delayed output (2-3)

u k = _(W k) -control function (2-4)

where xeR n, uER s and y_R TM, and the matrices A, B, and C are of

compatible dimensions; the finite non-negative integers T(k) and

A(k) represent the numbers of delayed samples in control inputs and

measurements, respectively. The control law u k is a linear function

of the history W k := {Wk,Wk_l,... } of the delayed measurements. The

plant in (2-1) and (2-2) is reachable and observable. The objective

is to construct the control function _ such that the effects of the

delays on the control system are mitigated.

Remark 2.1: It has been stated in Section 1 that the (randomly varying) network-induced delays are

assumed to be bounded. Therefore, for the purpose of delay compensator design, T and A may be

treated as upper bounds (in units of sampling periods) for the controller-actuator and sensor-

controller delays, respectively. In contrast, the delays in the ICCS model reported in our previous

work [11,12] are deterministically or randomly varying. •



Several investigators have addressed the problems of delay

compensation in closed loop control systems. An intuitive approach

[18] is to augment the system model to include delayed variables as

additional states. Unfortunately, this renders some of the states

uncontrollable even when the original system is completely

controllable [19,20]. For the case of delayed control inputs,

Pyndick [21] proposed a predictor for the optimal state trajectory

based on past control inputs. Zahr and Slivinsky [22] considered the

problem of controlling a computer-controlled system with measurement

and computational delays. It was pointed out that the delays in

multivariable systems may result in: (i) an increase in the

magnitudes of the transients, and poor response during the inter-

sampling time; (ii) loss of decoupling between individual SISO

control loops although decoupling may be restored for a stable

process at the steady state; and (iii) a possible decrease in

stability margin. Their algorithm was verified by simulation but the

use of an observer to estimate the unavailable states was not

discussed.

A significant amount of research work has been reported for observer

and controller design [20,23,24] for the case of inherent constant

delays that occur within the process to be controlled. In contrast

to the system, under consideration in (2-1) to (2-4) where the

sensor and control data are delayed, such processes are described as

follows:

dx(t)/dt = A x(t) + D x(t-h) + G u(t)

y(t) = C x(t)

i0

(2-5)

(2-6)



where h is a constant. By setting G=0 and D=BF in (2-5) (where F is

the gain matrix), it reduces to a delayed state-variable-feedback

system.

The reported literature in delay compensation does not apparently

address the problem of distributed delays in both the input and

output variables, which is the case with [CCS. A possible approach

[22] for compensation of constant delays that affect the input or

output variables of a system is to predict the current output.

However, if a state-space approach is used for predicting the

output, the plant state variables must be obtained first. Moreover,

the measurements might be corrupted with noise. In view of the

above, we propose to use an observer for estimation of the delayed

states and then to predict the current state using the state

transition matrix. However, this multi-step observer would impose

additional dynamics which generate additional phase lag in the

control system. The impact of this phase lag on the system dynamic

performance should not be significant because the controller is

expected to be designed with a sufficiently large stability margin

to allow for disturbances and uncertainties.

The observer parameters can be optimally selected to attenuate the

high-frequency noise in the measurements. If the measurement noise

is considerable, then the proposed algorithm could be extended to

include a stochastic filter [25] instead of a deterministic

observer. Furthermore, a reduced order observer or a functional

observer [26] can be used to reduce the observation lag.

!I



3. ALGORITHM OF THE OBSERVER-BASED DELAY COMPENSATOR

The algorithm for compensation of distributed delays is built upon

the concept of linear state-variable feedback control and multi-step

prediction where no loss of sensor or control data is taken into

account. The algorithm is presented below as a proposition.

Proposition 3.1: Given the following predictor-controller scheme:

Xk+l = AXk + BUk; Yk = CXk Plant Model; (3-1)

Zk+ll 1 = AZk] 1 + Bu k + Lk(Y k - CZk]l) Observer Model; (3-2)

Zk+l] r = AZklr_ 1 +Bu k r-Step Predictor for r_2; (3-3)

u k = FkZkl p Predictive Control for a fixed p_2; (3-4)

where Zk] r := estimate of x k given {Yk_r,Yk_r_l,...};

e k := x k - Zkl 1 is the estimation error;

the gain matrices {Lk} and {Fk} are apriori determined, and

the initial conditions z011

(3-5)

(3-6)

and {ui, i=0,...,p-l} are given.

Then, the closed loop system equation can be expressed as

Xk+ 1

ek-p+l

f

(A+BF k) -BFk3 k

0 (A-Lk_pC) ek-p

where the plant model is assumed to be exact and

12



3 k :=

p p-i p-i-I

_(A-Lk_P+9_IC) + _ [Ai-iLk_i C _(A-Lk_p+j_l c)]

j =i i=l j =i

if p>_2

I if 0<p<2

_: The proof of this proposition is supported by lemma B.I in

Appendix B. Subtracting (3-2) from (3-1) yields

Xk+ 1 - Zk+ll 1 = A(x k - Zkl I)

or ek+ 1 = (A - LkC) e k

- LkC(X k - Zkl I)

(3-7)

Substituting (3-4) in (3-1) and using (B-I.I) from lemma B.I yields

Xk+ 1 = Ax k + BFk[Zkl 1

p-2

i=0
AiLk_i_iCek_'i_l ] (3-8)

Adding and subtracting BFkX k and using (3-6) in (3-8)

p-2 .

AiLk_i_iCek_i_l ]Xk+ 1 = (A+BPk)X k + Brk[e k -
i=0

(3-9)

Using (3-7) ek+ q for some integer q__l can be expressed as

q

= [_ (A_Lk+j_iC)]e k (3-10)
ek+q j=l

Replacing e k and ek_i_ 1 in terms of ek_p, i.e., the use of (3-10) in

(3-9) yields

Xk+l = (A+BFk)xk _ BFk3kek_ p (3-11)

p p-2

where 3 k = _(A-L___ + _ [AiL . ,C
j=l .. r_j-i C) i= 0 k-i--

p-i-i

j_(A-Lk_p+j _iC) ]

13



The proof for pz2 follows by combining (3-7) and (3-11). If p=0

then 3k=I since the delay is zero and the ordinary separation

principle is applicable. For p=l the ordinary separation principle

still applies since only a first order prediction is used, i.e. uk =

FkZkl I. In other words, an ordinary linear state feedback controller

with observer drives the plant using a first order prediction of the

states; thus, a standard observer is naturally suited for

compensation of a constant delay of one time step. Thus, if p=l then

3k=I. •

Remark 3.1: If Lk=L and Pk=F, i.e., constant observer and controller gains, then Proposition 3.1

determines stability of the compensated system due to separation of the controller and the observer.

That is, the eigenvalues of the closed loop delayed system are the same as the combined eigenvalues

of the two matrices (A-LC) and (A+BF). •

The delay compensator is implemented on the basis of a priori known

upper bounds of the distributed delays that are induced by the ICCS

network. These bounds are expressed as integer multiples of the

controlie_ "SaMpling period T (which is also the sensor sampling

period). The existence of these upper bounds is justified from the

point of view of control system design because the control system

will be open-loop otherwise. Figure 3-1 shows implementation of the

delay compensation scheme in Proposition 3.1. The resulting control

system is modeled as follows.

14
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Wk = Yk-p

k-p+l I1 = (A-LC) Zk_Pl 1 + BUk + LWk

Zk+llr = AZk Ir-I + BUk for p>_r__2

u k = FZkl p

-delayed sensor data

-observer dynamics

-p-step predictor

-control law

(1-3)

(1-4)

(1-5)

(i-6)

where x6R n, u6R s and y6R m, the matrices A, B, C, L,

defined earlier. The number of predicted steps,

compensator is determined, in general, as the

bounds (relative to a specified confidence

controller-actuator and sensor-controller delays.

and F are as

p, in the

sum of the upper

interval) of the

Remark 3.2: Loss of sensor and control data is not accounted for in the derivation of the delay

compensation algorithm in Proposition 3.1. However, if the network recurrently loses data as it is

pointed out in Section 1, the plant may be rendered unobservable or unreachable. Under these

circumstances, the notion of observability (reachability) can be extended as explained in detail in

[15,16] and Appendix A. If the plant satisfies the condition of extended observability (reachability),

then the delay compensator may still function in a possibly degraded mode. Performance analysis of

the delay compensator under recurrent loss of data is a subject of future research. •

Remark 3.3: The number, p, of predicted steps could be obtained as the sum of the specified bounds

of the distributed delays, e.g., A(k) and T(k). If the joint statistics of A and T are known, p could

be calculated more precisely. •

Remark 3.4: Although the sensor and actuator are assumed to be synchronized, the controller is not

required to be synchronized with the sensor or actuator. The time skew between the controller and

sensor/actuator sampling instants is absorbed within A and T. •

16



Remark $,,5: If the sensor and actuator are not collocated, then they can be synchronized by

transmitting high priority interrupt signals via the network medium or by additional wiring [12].

Nevertheless this will increase the system reliability requirements. •
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4. MODELING UNCERTAINTY OF A TWO-STEP PREDICTOR/CONTROLLER

In this section we investigate the effects of modeling uncertainty

upon performance of the predictor-controller algorithm for the case

when the total delay to be compensated is equal to two sampling

periods. Let the plant model described in (3-1) have the true

dynamical characteristics given as:

Xk+l = Ak"Xk + Bk"Uk ; Yk = Ck"Xk (4-i)

In view of the above the modeling uncertainties are defined as:

6A k := Ak"-A; 6B k := Bk"-B; 6C k := Ck"-C (4-2)

Remark 4.1: The postulated model of the plant is time-invariant whereas the uncertainties may be

time-varying. •

The controller structure, given by (3-1)-(3-6) with p=2 in (3-4) and

steady-state controller gain F and observer gain and L, are:

u k = FZkl 2 (4-3)

Zk+ll 1 = AZkl 1 + Bu k + L(y k - CZkll) (4-4)

Zk+ll 2 = AZkl 1 + Bu k (4-5)

e k = x k - Zkl 1 (4-6)

We intend to obtain a closed loop, augmented state variable

representation in such a way that the modeled system dynamics and

the modeling errors are decoupled to the maximum possible extent.

From now onwards, for the sake of brevity, the subscript k from the

time-varying matrices in (4-2) are omitted.

!8



Substituting (4-1) and (4-4) into (4-6) yields

ek = A"Xk_ 1 + B"Uk_ 1 - [AZk_lll+BUk_l+L(C"Xk_l-CZk_lll ) ]

= _"Xk_ 1 - _Zk_l] 1 + 6BUk_ 1 (4-7)

where _" := A"-LC" ; • := A-LC

Adding and subtracting @Xk_ 1 in the right hand side of (4-7)

e k = _ek_ 1 + eXk_ 1 + 6BUk_ 1 (4-8)

where e := _"-_ = 6A-IZC

Substituting (4-3) in (4-8) yields

e k = _ek_ 1 + eXk_ 1 + 6BFZk_ll 2 (4-9)

Substituting (4-5) in (4-4) yields

Zk+lll = Zk+ll2 + LC"Xk - LCZk II

= - LC" + LCZk_ 1or Zkl 2 Zk I1 Xk-i Ii

= x k - (Xk-Zkil) - LC(Xk_l-Zk_lll) - L(C,,-C)Xk_ 1

Substituting (3-6) and (4-2) in the above equation yields

Zk 12 = Xk - ek - LCek-i - IZCXk-i

Substituting (4-9) in (4-10) yields

Zkl 2 = x k - [_ek_ 1 + 8Xk_ 1 + 6BFZk_ll 2] - LCek_ 1 - IZCXk_ 1

= x k - (_+LC)ek_ 1 - (e+IZC)Xk_ 1 - 6BFZk_ I12

= Xk - Aek-i - 6AXk-i - 6BFZk-ll2

Substituting for Zk_ll 2 in the above equation by using (4-10)

Zkl 2 = x k - Aek_ 1 - 6AXk_ 1 - 6BF[Xk_l-ek_l-LCek_2-L6CXk_2]

= x k -(A-6BF)ek_ 1 -6GXk_ 1 +6BFIZCXk_ 2 +6BFLCek_ 2 (4-11)

where 6G := (6A÷6BF)

Substituting for Zk_ll 2 in (4-9) by using (4-11) yields

e k = _ek_l+eXk_l+6B£ [Xk_ I- (A-&BF) ek_2-6GXk_2+6BFIZCXk_3+6BFLCek_3 ]

e +a e +F ^ ^ x +a x +a x=@ek-l+aB2 k-2 B3 k-3 A B C k-i B1 k-2 BC k-3 (4-12)

(4-10)
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where FA^B^C := (O+6BF) =

:=-6BF_G
aBl

aB C := (6BF)2IZC

:=-6BF (A-6BF)
aB2

aB3 := (6BF) 2LC

substituting (4-12) into (4-115 yields

Zk I2 = xk - (A-6BF) [@ek_2+SB2ek -3+aB3ek-4+FA^B^cxk-2+

8BlXk_3+aBcXk_ 4] - 6GXk_ 1 + 6BFIZCXk_ 2 + 6BFLCek_ 2

Grouping similar terms
+ 8B5Xk-4

+ 8B4Xk-3
+ @A^B^cXk-2

Zkl 2 = x k - 6GXk_ 1
+ aBSek-4

+ aB7ek-3
+ (aB6 -A_) ek-2

where + 6BFIZC = - (A-6BF) (6A-IZC+6BF5 + (6BF) IZC

aA^B^ c :=-(A-6BF)FA^B^C = (A-6BF)6B_( _A+6BF5

OB 4 := - (A-6BFSOBI = - (A-6Br) (6BF) 2IZC

aB5 := - (A-6BF) aBC

OB 6 := 6BF_+6BFLC = 6BF (_+LC) = 6BFA
= (A-6BF) 6BF (A-6BF)

OB 7 := - (A-6BF) @B2 = - (A-6BF5 (6BF52LC

OB8 := - (A-6BF) @B3

substituting (4-13) and (4-3) in (4-I) yields

Xk+ 1 = A"X k + B"F[X k - 6GXk_ I + aAABACXk-2 + 8B4Xk-3

+ 8BsXk-4 + (aB6-A_)ek-2 + aB7ek-3 + aBSek_4 ]

Rearranging and grouping similar terms

Xk+ 1 = Yx k + DA^BXk-I + DA^B^cXk-2 + DBlXk-3 + DB2Xk-4

+ Qek_ 2 + DB3ek-3 + DB4ek-4

where Y := (A,,+B"F) = (A+BF)+6G

Q := B,,F(aB6_A@) = B,,F(6BFA-A(A-LC))

=-B"F (6A+6BF)

DAAB :=-B"F6G

DA^BAC := B"F@AAB^C

(4-13)

(4-145

= B"F[ (6BF)IZC - (A-6BF) (6A-IZc+6BF5 ]
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DBI := B"FaB4

DB2 := B,,FaB5

DB3 := B"FaB7

DB4 := B"FaB8

= B"r (A-_Br)_Br (6A+6BF)

=-B"F (A-6BF) (_Br)2IZC

= B"F (A-6BF) 6BF (A-6BF)

=-B"F (A-6BF) (6BF)2LC

The closed loop equation of the 2-step delayed system follows from

(4-12) and (4-14)

Y DA^ B DA^B^C DBI DB2 Q DB3 DB4

I 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0

0 0 I 0 0 0 0 0

0 0 0 I 0 0 0 0

0 0 FA^B^C aBl aBC _ @B2 aB3

0 0 0 0 0 I 0 0

0 0 0 0 0 0 I 0

x k

Xk- 1

Xk- 2

Xk- 3

Xk- 4

ek- 2

ek- 3

ek- 4

(4-15)

Xk+ 1

x k

Xk- 1

Xk- 2

Xk- 3

ek- 1

ek- 2

ek- 3

where the subscripts of elements are chosen to describe their

relative dependence on the respective errors in formulating the

plant model matrices. The above equation can be separated into the

nominal and uncertain parts:

Xk+ 1 = (V + 6V) X k
(4-16)

XkT T T T T T T T Twhere X k := [ Xk_ 1 Xk_ 2 Xk_ 3 Xk_ 4 ek- 2 ek-3 ek-4 ] '

V is the nominal part which is constant as it contains the

constant matrices A, B and C of the plant model in (3-1), and

6V is the uncertainty part which is possibly time-varying

because of modeling error matrices 6A, 6B and 6C.

Stability of the above system is discussed in Appendix C.
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Remark 4.2: The modeling errors 6A, 6B and 6C constitute a four-fold increase over the order of the

augmented system matrix in (4-15). However, by setting 6B=0, the following simplifications result.

aBI=aB2=aB3=aBc=DBI=DB2=DB3=DB4=0 and Y=(A+6A+BF), DA^B=-BF6A,

DA^B^c=-BFA(6A-L6C), Q=-BFA(A-LC), FAABAC=(6A-IZC).

Accordingly the system is reduced with 6B=O as follows

p
k

Xk+l

x k

Xk_ 1 =

ek- 1

A+6A+BF -BF6A -BFA (6A-IZC) -BFA (A-LC)

I 0 0 0

0 I 0 0

0 0 6A-IZC A-LC

P

x k

Xk- 1

Xk- 2

ek- 2

(4-17)

Remark 4.$: By separating the uncertainty part, the above equation can be expressed in the format

of (4-16) with reduced-order state representation (due to the assumption 6B=0) as follows:

_Xk+ 1 = (mV + 6V) X k (4-18)

T T T T T twhere X k = [x k Xk_ 1 Xk_ 2 ek_ 2 ] and

V =

 +BF 0 0 -BrA(A-LC)

I 0 0 0

0 I 0 0

0 0 0 A-LC

6A -BF6A -BFA (6A-IZC) 0

0 0 0 0

0 0 0 0

0 0 6A-IZC 0

J

m

Remark 4.4: With 6B=0 the effects of 6A and 6C are to increase the order of the closed loop system

by two. •
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5. EXPERIMENTAL VERIFICATION AT A NETWORK TESTBED

The delay compensation algorithm was verified at a network testbed

which uses the i0 Mbps IEEE 802.4 linear token passing bus and IEEE

802.2 as the link layer protocol in an ISO compatible network

architecture (see Appendix B of [12]). Three terminal interface

units, each of which are installed as a pair of cards in the

backplane of a microcomputer, serve as the communication link in the

network testbed. These host microcomputers can communicate with

each other via the network medium or directly by using RS-232C

communication ports (at a maximum data rate of 9.6 kbps). These

microcomputers are PC-AT compatible under the Disk Operating System

(DOS). They are designated as host #i, host #2, and host #3.

The host #3 serves as the network manager. By use of the remaining

terminal interface units, namely host #i and host #2, a traffic load

generator (TLG) has been designed to emulate the scenario of a large

number of virtual stations with varying traffic. These virtual

stations form a virtual ring in the sense that a virtual token hops

around this ring. All odd-numbered virtual stations are emulated on

host #i and all even-numbered virtual stations on host #2. These two

microcomputers communicate with each other via the network. While

the real token travels back and forth between hosts #i and #2, a

virtual token hops around this virtual ring to emulate an actual

logical ring consisting of a large number of terminals. Although

this arrangement does not guarantee the transmission rate of the

actual network, it suffices to emulate the randomly distributed
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delays between the source and destination terminals. The TLG can

emulate any number of virtual stations, and the message inter-

arrival time and message length at each station can be arbitrarily

selected using the random number generator (RNG) functions that are

resident in hosts #i and #2. In this way, the TLG offers flexibility

of generating randomly varying network-induced delays with specified

upper bounds.

In the test apparatus, the plant and actuator are represented by a

constant-field DC servomotor, and a tacho-generator serves as the

sensor for measuring the motor speed. The sensor and actuator are

connected to one of the virtual stations in host #i which provides

the hardware and software for the DASH-16 A/D and D/A conversion via

direct memory access (DMA). This odd-numbered virtual station is

designated as #i in the emulated logical ring. The controller is

located in host #2 and can be designated as any even-numbered

virtual station, i.e., the controller station can be arbitrarily

located in different positions in the logical ring relative to the

sensor/actuator station. Since the host #2 functions as an integral

part of the TLG, multitasking operations are needed for concurrent

execution of the TLG and controller functions. To avoid this

multitasking operation (which is not convenient under the DOS

environment), the host #3 (which is practically idle during normal

operations in the capacity of a network manager) is directly

connected (via RS-232C) to host #2 such that host #3 serves as a

coprocessor for host #2. The control algorithm is resident in host

#3 which receives the sensor data (originally generated by the A/D
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converter at host #i) from host #2 and transmits back the control

command to host #2. This control command is eventually transmitted

via the network medium to host #I for being fed to the D/A converter

as shown in Figure 5-1.

Remark 5-1: The transmission delays of the sensor and control data via RS-232C between hosts #2

and #3 can be viewed as part of the total data processing delay at the controller. •

Remark 5-2: The time skew between the sensor and controller can be set to any desired value

(between 0 and T) via the RS-232C link between hosts #1 and #3 during the initialization of this

test facility. •

The servomotor serves as a continuous-time plant which communicates

with its computer controller via the network. This represents a

control loop within the [CCS. A relative measure of efficacy of the

proposed delay-compensation algorithm is obtained by comparing the

performance of a Proportional-Integral (PI) controller without any

delay compensation against that of the same controller with delay

compensation.

The steady-state characteristics of the plant were experimentally

determined as:

YSS =

K (Uss-_) for Uss>_

0 for -__<Uss_<_

K (Uss+_) for Uss<-_

(5-i)
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where Yss = measured steady-state angular velocity of the motor,

u = constant input voltage,
ss

K = steady-state plant gain, and _ = limit of dead band.

In the linear region, the motor dynamics were represented by a first

order model after appropriate bias compensation in the control

input:

Xk+ 1 = a x k + b u k

Yk = c x k

where a = exp(-T/r), T and r being the sampling period and the motor

time constant, respectively,

(j÷l)T

b = f exp(-((j+l)T-t)/r) K dt/r = [l-exp(-T/r)]K, and c=l.

jT

The plant parameters were identified from experimental data to be:

r=l.7s; K = 3.33 (rad/s)/volt; and 8=3.4 volts which is equivalent

to 11.3 rad/s. The state variable feedback, in this first-order

plant, yields a proportional controller where the gain, 7, is

obtained by pole placement such that the closed loop pole _=a-bT.

Similarly the observer gain I is chosen to place the observer pole

at f=a-_.

Since the plant model is not exact, the observer is expected to

generate a steady-state error in the state estimate. Therefore, a

weak integral action was used to compensate for this possible
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steady-state error. The integral gain was set, by trial and error,

between 0.09 and 0.15 volt/(rad/s) to provide zero steady-state

error for a variety of induced delays.

Two different experimental setups were considered. The first

experimental setup was oriented towards determining the efficacy of

the delay compensation algorithm when the total delay in the control

loop is a constant with magnitude equal to an integer number of

sampling periods. The second experiment emulated an [CCS environment

by using randomly varying delays. The objective of the second

experiment was to examine the robustness of the observer-based

compensator due to data rejection and vacant sampling [11,12]

coupled with plant modeling uncertainties and nonlinearities.

5.1. Experimental Setup #1: Velocity Control with Constant Delays

The objective of this experiment was to investigate the performance

of the uncompensated and compensated control systems of the

servomotor with deterministic delays such that a constant bound of p

sampling periods could be strictly enforced. This was accomplished

by setting: (i) the number of virtual stations to a minimum of two;

(ii) network-induced delays to desired values by adjusting the

emulated traffic; and (iii) the time skew between (co-located)

sensor and actuator sampling instants to zero. This arrangement is

equivalent to generating a constant delay by storing the incoming

data from the A/D converter into a FIFO, push-pop buffer of size p.
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Remark 5-4: From Proposition 3.1 in Section 3, it follows that the observer should behave identically

for p=0 and p=l for constant gains F and L provided that the plant model is exact. •

Rema,'k 5-5: Since the plant under test is nonlinear, the dynamic characteristics of the control

system are a function of the reference input. •

Figure 5-2 compares the response of the compensated control system

with that of the control system without the observer when the delay

was zero, and a step change of 16 rad/s in the reference velocity

was applied from 0 rad/s. The controller and observer poles were set

at _=0.5s -I and f=0.15s -I, respectively, the integral gain of the PI

controller to 0.15 volt/(rad/s), and the sampling period to 0.3s.

The maximum input to the motor was restricted to I0 volts to avoid

any potential damage; this corresponds to a steady state velocity of

about 22 rad/s.

As expected, the performances of the system with and without the

compensator were comparable for zero delay. In this case, the

observer-based controller suffered from the error in state

estimation. The tracking properties of the observer can be improved

by feeding in well-structured information about the plant

nonlinearities. For instance, the input to the observer can be

modified as follows:

uobI!con-
con _/K

if Uco n > #/K

if lUconl_/K

if U <- #/K
con

(5-4)

29



!

C_

o 0

0
0

0

0

E

._ mo
"'' I )

0 _ 0 LO 0

(0as/pEi) _TDOTaA _ETnSu_

(J

r_
,L

II

>-)
,,,l.J

_J
0

O>

0 0._
_--.

r-'

4- 0
OC,_ *

_d
e-.
o ii
e-_

e,e" _.--

U e.-._

e- x

_d
!

o
£.

Ix.

3O



where Uob is the modified input to the observer and Uco n is the

actual input to the DC motor. This empirical modification mimics the

nonlinearities in the steady-state characteristics of the servomotor

by adding a priori known information about the bias to the observer in

the form of an input, and does not increase the order of the

observer. Results, to be presented next, indicate that the steady

state tracking errors were practically eliminated in this modified

system. With the above modifications, the controller and observer

poles were reset at p=0.1s "I and f=0.0, respectively, the integral

gain to 0.09 volt/(rad/sec), and the sampling period was retained at

0.3s.

Remark 5-6: The above parameter settings were tested, by trial and error, to yield best responses of

this nonlinear system for different delays. •

Remark 5-7: In general, setting the observer pole at zero, i.e. making the observer to be deadbeat, is

not a recommended practice because of possible noise amplification. The integral action, enforced in

this experiment, should act a low pass filter to attenuate the high frequency noise. The response of

the compensated system was found to settle down slightly faster than that of the uncompensated

system when the delay was zero in both cases [17]. A possible explanation for this phenomenon is

that a lead action is provided by the observer with a pole at zero. •

Experiments were conducted for different combinations of delays and

reference velocities. Series of curves comparing the responses of

the compensated and uncompensated system are recorded in [17]. We

summarize the general information first and then present the

selected results in detail.
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The performance of the compensated system was always superior to

that of uncompensated system for delays of T and 2T, i.e., one and

two sampling periods. For delays of 3T and larger, the compensated

system generally exhibited significant oscillations, and the

uncompensated system performed worse. For example, with a delay of

3T at the reference velocity of 17 rad/s, the compensated system

response exhibited a limit cycle which was 3 times smaller in

magnitude than that in the uncompensated system. The impact of

reference input on the nonlinear system is presented next.

Because of the deadband nonlinearity of the servomotor, a sudden

jump in the system response was caused whenever the reference input

was set close to =12 rad/s. As the reference input was increased,

the dynamic responses of both compensated and uncompensated systems

improved regardless of the magnitude of the delay. This is expected

because as the reference speed is increased the motor excitation is

drawn away from the on-off nonlinearity region. Moreover, the plant

model is possibly better represented at higher velocities where the

motor voltage versus speed characteristics are more closely follow a

straight line pattern. As a result of a dead band in the motor

characteristics, limit cycles frequently appeared in the

uncompensated system response.

Now we present selected results in Figures 5-3 and 5-4 to show

comparisons of dynamic responses of the delay compensated system for

delays of T and 2T with step changes of 15 rad/s and 13.5 rad/s,

respectively, in the reference velocity from 0 rad/sec. The response
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of the compensated system is less oscillatory and evidently superior

to that of the uncompensated system in Figure 5-3. The uncompensated

system in Figure 5-4 suffered from sustained oscillations because

the reference velocity of 13.5 rad/s is close to 12 rad/s when the

servomotor tends to stall. In contrast, the compensated system

brought the response to the reference point without any noticable

undershoot and thus saved the system from entering into the deadband

zone.

Remark 5-8: The predictive properties of the compensator apparently largely eliminate the problems

of limit cycling for delays of T and 2T. Since the above observation relates to a first order plant

under specific operating conditions, these experimental results do not provide a definite conclusion

regarding robustness of the delay compensator relative to plant modeling uncertainties and

nonlinearities in higher order plants. •

5.2. Experimental Setup #2: Velocity Control with Random Delays

The objective of this experiment was to investigate the performance

and robustness of the proposed delay compensation algorithm when the

communication network was subjected to random traffic generated from

a large number of virtual stations. The control system is likely to

be subjected to data rejection and vacant sampling at the

controller's receiver buffer [11,12] if the compensator is not used.

This problem can be apparently circumvented by an appropriate choice

of buffer size, namely p, at the controller and actuator buffer.

However, if p is selected to be small, the randomly varying delays

would exceed this bound and generate vacant samples with a larger
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probability. On the other hand, if p is selected to be large, the

impact of randomly varying delays would be reduced at the expense of

potential instability due to plant modeling uncertainties and

nonlinearities. (Note: If the plant is unstable in the open loop,

then it follows from Figure 3-1 that the dynamic error of estimation

will be worse with a larger p). Selection of p becomes a design

problem which calls for trade-off between mitigating the effects of

uncertainties in network traffic and plant modeling.

Setup #2 is similar to setup #i with the following exceptions:

Number of virtual stations = 30.

Identical traffic distribution at all 28 virtual stations except the sensor and controller. The

message arrival process is Poisson with an average inter-arrival time of 0.3s. These virtual
stations were assumed to have identical message lengths which were adjusted to keep the

offered traffic [6] at 0.5.

In view of additional noise due to rando.mly varying delays, locations of controller and
-1 -1 •

observer poles were moved back to _=0.5s and f=0.15s , respectively, from the previous

values of 0.1 and 0.0. The integral gain was reset to 0.15 volt/(rad/s) from 0.09 to compensate

for potentially larger steady-state estimation errors.

In general, the system dynamic response deteriorated under random

traffic for both compensated and uncompensated systems [5]. A

typical comparison is shown in Figure 5-5 where the response of the

compensated system is seen to be superior to that of the

uncompensated system. Since the traffic distribution is Poisson, the

upper bounds of the network-induced delays can only be set with a

certain confidence. Having the bounds of each of the two induced

delays set to the sampling period T implies that p=2. This causes

some of the sensor and controller data to be lost, and yields a

steady-state error possibly due to vacant sampling. If it was

possible to increase T without appreciably affecting the system

dynamics, upper bounds of the induced delays would have larger

confidence intervals. Consequently, the probability of exceeding

these bounds would be reduced resulting in improved performance of

the compensated system.

Remark 5-9: Both compensated and uncompensated systems were less sensitive to data rejection ,and

vacant sampling, when the controller pole was set closer to unity. On the other hand, bringing the
controller pole close to unity results in a sluggish system response. Design of the compensated

control system under randomly varying delays needs a trade-off between these two opposing

requirements. •
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6. SIMULATION OF A FLIGHT CONTROL SYSTEM

The delay compensation algorithm was verified by simulation of the

longitudinal motion control of an advanced aircraft. The flight

control system model and the combined continuous-time and discrete

event simulation program were similar to those reported in [2].

Simulation results were generated by augmenting the continuous-time

part of the above model with the proposed delay compensation

algorithm while the discrete-event model of the network was

unchanged.

Simulation results were generated under the following conditions:

The network protocol is the optical version of SAE linear token passing bus with a

transmission rate of 100 Mbps.

The network has 30 stations that share the common medium.

Station #1 operates as the sensor terminal, and station #2 as the controller terminal with its

transmitter queue handling actuator commands and its receiver queue handling sensor data.

Terminals #1 and #2 have a sampling period of 50ms and constant message lengths with the

information part equal to 64 bits.

Time skew (between sensor and actuator sampling instants) to zero.

Random traffic in stations #3 to #30 was identically distributed. The message arrival process

is Poisson with an average inter-arrival time of 50ms. These terminals are assumed to have

identical message lengths which are adjusted to maintain the offered traffic [27] at any desired
level.

A schematic diagram of the flight control system is shown in Figure

6-1. (A discrete version of the controller was implemented in the

simulation.) The state-variable model of the plant, excluding the

sensor data conversion factor of 180/_, is described below.
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Plant Variables and Parameters:

5a = Elevator command, i.e., input to the actuator

6e = Elevator deflection, i.e., actuator output

W = Normal component of linear velocity
at the center of mass

(radian)

(radian)

(ft/s)

Q = Pitch rate about the center of mass (radian/s)

= Angle of Attack (radian)

A = Normal component of linear acceleration
n

at the sensor location (ft/s 2)

The dimensional stability derivatives [2,28] for longitudinal motion

dynamics were selected as:

Zde := (aZ/a6e)/m =-202.28 ft/s 2,

Z := (OZ/OQ)/m =-16.837 ft/s,
q

-1
Zw := (0Z/0W)/m =-3.1332 s ,

-2

Mde := (OM/O6e)/Iy -40.465 s ,

-1

Mq := (0M/0Q)/Iy =-2.6864 s ,

M w := (0M/0W)/Iy =-0 01429 (s-ft) "I• t

Mwd := (0M/0W)/Iy = -0.00115 ft -I.

where M

Z

m

I
Y

is the pitch moment;

is the normal component of the aerodynamic force;

is the lumped mass of the aircraft; and

is the moment of inertia about the pitching axis.
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Other constant parameters were:

g = 32.2 ft/s 2

I = 12.268 ft

r = 0.05 s

U o = 1005.3 ft/s

(Acceleration due to gravity)

(Distance between the center of gravity of

the airframe and the accelerometer)

(Actuator time constant)

(Reference flight speed)

Longitudinal Motion Dynamics in the Continuous Time Domain:

dx/dt = Ax + Bu; y = Cx (6-1)

where x = [6e W Q]T, u = 6a, y = [_ A n Q]T, and

A

"_-i 0 0

Zde zw S O

S 1 S 2 S 3

, B= 0 , C=

I

0
J

P

0 U -1 0
o

-S 4 -S 5 -S 6

0 0 1

and

S O := (Zq+Uo),

S 3 := [Mq+Mwd(Zq+Zw) ],

S 6 := (Zq+IS3)/g.

S 1 := (Mde+MwdZde) , S 2 :=

S 4 := (Zde+ISl)/g, S 5

(Mw+MwdZw) ,

:= (Zw+IS2)/g ,

The sensor and controller sampling period T was chosen to be 50ms in

contrast to i0 ms in [2]. The rationale for selecting a larger value

of T was to illustrate how the delay-compensated system would

perform relative to the uncompensated system when the sampling rate

may have to be reduced to allow for longer processing time for
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executing complex control algorithms. This problem might

encountered in future generation hypersonic aircraft.

be

The observer in the delay compensator was designed in a transformed

state space where the three measured outputs _, An, and q were made

the state variables. All three poles of the discrete-time observer

were located at 0.3s -I . Then the compensator was constructed

following the scheme in Figure 3-1 and the control law in Figure 6-

I. In the simulation program, the conversion factor of 180/_ as

shown in Figure 6-1, was used after the estimated states were

computed by the observer.

The dynamic responses of the controller output, angle of attack,

normal acceleration, and pitch rate were obtained for a unit step

change in the reference signal under different offered traffic in

the network. The compensated system response was always less

oscillatory than that of the uncompensated system. From the point of

view of aircraft control, the benefits of the less oscillatory

response are better dynamic response, and reduced control effort and

actuator wear.

Figure 6-2 presents dynamic responses of pitch rate for the three

cases of non-delayed (i.e., without network-induced delays), delay-

compensated, and uncompensated delayed control systems when the

offered traffic was set to 0.5. Apparently, the detrimental effects

of network-induced delays are partially circumvented and the flight

control system response is improved significantly with the use of
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the compensated control scheme. Further research is needed for

robustness evaluation of the observer relative to plant modeling

uncertainties beyond the analysis presented in Section 4.

Remark 6-1: A common tendency in ICCS design is to increase the sensor

sampling rate so as to avoid large delays introduced by the

communication network on the tacit assumption that an arbitrarily

large bandwidth is available in optical data communication networks.

The above assumption may not hold if the network is shared by a

large number of control and decision-making functions. Eventually,

the increase of network traffic may result in large induced delays

for some of the control loops even though the average bus load may

remain well below the bandwidth capacity. Following a similar

argument, the number of subscribers served by the network would be

unduly restricted if the network-induced delays have to be bounded

within a very conservative limit. Nevertheless, if appropriate

models of the controlled processes are available then, as seen in

the experimental and simulation results, the network utilization can

be increased by using compensated control systems instead of

increasing the sampling rates. The additional computational

requirement for the compensator, depicted in Figure 3-1, is expected

to be small in comparison to that of the complex algorithms of

integrated control systems in the current and future generation

advanced aircraft. Therefore, this concept of observer-based delay

compensation will allow the controller computers to have less

stringent processing power requirements. •
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7. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR FUTURE RESEARCH

A procedure for compensating the effects of distributed network-

induced delays in Integrated Communication and Control Systems

([CCS) has been proposed. The problem of analyzing systems with

time-varying and possibly stochastic delays could be circumvented by

use of a deterministic observer which is designed to perform under

certain restrictive but realistic assumptions.

The proposed delay-compensation algorithm is based on a

deterministic state estimator and a linear state-variable feedback

control law. The deterministic observer can be replaced by a

stochastic observer without any structural modifications of the

delay compensation algorithm. However, if a feedforward-feedback

control law is chosen instead of the state-variable-feedback control

law, then the observer needs to be modified in the same way a

conventional non-delayed control system should be. Under these

circumstances the delay compensation algorithm would be accordingly

changed.

The separation principle of the classical Luenberger observer [26]

holds true for the proposed delay compensator.

The proposed delay-compensation algorithm is suitable for Integrated

Communication and Control Systems (ICCS) in advanced aircraft,

spacecraft, manufacturing automation, and chemical process

applications. If the individual components of the ICCS communicate
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with each other via a common communication medium, then the network

can be designed such that the induced delays are bounded. In this

way the detrimental effects of distributed delays induced by the

network can be circumvented by the compensator.

As the first step to robustness analysis, the impact of modeling

uncertainties, i.e., errors in the plant model matrices, on the

performance of the delay-compensated system has been investigated.

Further analytical research is recommended following the established

techniques for robustness and stability [29-32].

This report has addressed the concept, analysis, implementation, and

verification of an algorithm for compensation of network-induced

delays that occur in Integrated Communication and Control Systems

([CCS). As reported in Section 3, this algorithm has been developed

on the basis of a deterministic state estimator, a multi-step

predictor, and a linear state-variable feedback control. The

proposed delay-compensation algorithm is suitable for ICCS in large-

scale processes like advanced aircraft, spacecraft, autonomous

manufacturing plants, and chemical plants. The communication

network, that interconnects the individual subsystems and components

of the [CCS, should be designed such that the induced delays are

bounded relative to a specified confidence interval. In this way the

detrimental effects of the distributed and varying network-induced

delays can be (at least partially) circumvented by the compensator.

The impact of modeling uncertainties, i.e., errors in the plant

model matrices, on dynamic performance and stability of the closed
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loop compensated system has been investigated for a two-step delayed

system. Given the specifications of the control system, the above

approach has a potential for establishing bounds on the modeling

errors.

Implementation of the delay-compensation algorithm, followed by

experimental and simulation results have been presented.

Experimentation with a DC-motor in a network testbed assembly has

demonstrated that the observer-predictor functions in presence of

plant modeling uncertainties, nonlinearities and disturbances, and

measurement noise. Simulation of the flight control system of an

advanced aircraft within a network environment also shows that the

delay compensator is capable of improving the system dynamic

performance. However, further analytical and experimental research

beyond those reported in this report is needed to enhance robustness

of this delay compensator.

Possible areas for future research in the evolving field of

Integrated Communication and Control Systems are innumerable. Some

of the topics related to the research reported in this report are

furnished below.

Research Topic #1 : Stochastic Filtering

A stochastic filter can be designed to accommodate the effects of

varying delays. The following formulation can be used to specify the

filter requirements. Let the plant model be described as
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Xk+l = AkXk + BkUk + nk Yk = CkXk + Vk

where the plant and measurement noises, nk and Vk, are assumed to be

white, mutually independent, and of covariances Q and R,

respectively. The delayed sensor data Wk, as input to the filter, is

represented as:

Wk = 60 (ek) Yk + 61(ek) Yk-i + 62 (ek) Yk-2 + "'" + 6p-i (ek) Yk-p+l

or, alternatively, as

w k = 60(ek)CkXk + 61(ek)CkXk_ 1 + ... + 6p_l(ek)CkXk_p+l + v k.

where 6i(J), i,j=0,1,2,...,p-I is the Kronocker delta defined as

1 if i=j

6i(J) = , and
0 if i_<j

the network-induced parameter e k is a stochastic chain defined as:

ek=e(k,_ ) :_x_ _ (0,1,2,...,p-l),

with _ and n representing the above finite set of non-negative

integers and the sample space, respectively.

The objective is to obtain the estimate, Xk, of the state Xk, which

minimizes the performance index

J% T
J = E([Xk-Xk] M [X_k-Xk ] J W k)

where W k is the collection of past measurements (w0,wl,...,Wk),

E(.JWk} is the conditional expectation given Wk, and

M is a positive semi-definite weighting matrix.
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The above algorithm, formulated with p=2, can be applied to the

problem of sequential state estimation of discrete processes with

interrupted observations. Sawagari et al. [33] proposed a similar

formulation but the input to the filter was formulated, with p=2,

as:

wk = 60(e k) ckx k + v k.

In the case of missing data, a filter based on the proposed

formulation may yield better results than that obtained by Sawagari

et al. Particularly, the approach of Sawagari et al. may not be

effective if x k is under steady state conditions because, assuming

that v k is small, w k would oscillate between 0 and CkX k. On the

other hand, in the proposed formulation, w k can vary only between

Ck_iXk_ 1 and CkX k.

Research Topic#2: Robust Compensator Design using LQG/LTR

The performance robustness and stability of the control system would

be affected by insertion of the delay compensator in the loop.

Having designed the optimal state feedback gain F, the observer gain

L in the compensator needs to be tuned so that the overall system

performance is optimal under plant modeling uncertainties, process

disturbances, and measurement noise. Linear Quadratic Gaussian (LQG)

using Loop Transfer Recovery (LTR) [31,32] is a potential candidate

for designing the delay compensator.
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Research Topic #3: Optimization of Control and Network Parameters

A cursory treatment on optimization of network-induced delays and

associated parameters has been given in Section 4 of [12] for two

special configurations of the control system: One is the case of

identical sampling frequency of the sensor and controller within a

feedback control loop; the other addresses the situation where the

sensor sampling frequency is larger than that of the controller,

which is a viable option for ICCS design.

For identical sampling, the critical network parameter is _, the

time skew between the instants of sensor and controller samplings,

which is a very slowly varying parameter. Therefore, _ should be

periodically adjusted to maintain optimal performance of the delayed

control system. The control law designed with the assumption of a

fixed delay may not perform satisfactorily when the system is

subjected to network-induced delays. Furthermore, as the

characteristics of network traffic change, the induced delays would

vary. Consequently, the controller parameters and the time skew

should be updated. Therefore, the objective is to derive an optimal

control law for a system that is subjected to network-induced delays

under varying network traffic. Although research addressing optimal

control has been reported for systems with transportation lag

[34,35], the simultaneous optimization of control and network

parameters, namely the state-variable feedback matrix F and time

skew _, has not been apparently attempted before. Future research

may make use of the model derived in [ii].
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For the alternative approach of non-identical sampling [12.13], the

research problem is identification of an optimal sampling ratio _,

which minimizes a specified performance index and guarantees

stability of the closed loop control system under given network

traffic statistics and a fixed controller sampling period.

Research Topic #4: Selection of the Number of Predictor steps

The delay compensation algorithm, presented in this report, does not

take into account the effects of recurrent loss of sensor and/or

control data in the network. (See Remark 3.2 and Appendix A). The

compensated system is expected to perform in a gracefully degraded

mode if the system remains observable and reachable under recurrent

loss of data. The number, p, of predicted steps may be required to

be increased to accommodate this feature. Selection of p is dictated

by uncertainties in both network traffic and plant modeling.
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APPENDIX A

EXTENDED OBSERVABILITY UNDER RECURRENT LOSS OF OUTPUT DATA

An observable (reachable) system that assumes availability of sensor

(control) data at consecutive samples may become unobservable

(unreachable) due to recurrent loss of data in the computer network.

If the control system is unstable in the open loop as it could be

for highly maneuverable supersonic aircraft, then recurrent loss of

data could render the system undetectable and/or unstabilizable.

The concept of state estimation with recurrent loss of sensor data

has been addressed by other investigators in different contexts. For

example, Sawagari et al. [33] and Jaffer and Gupta [36] considered

the problem of sequential estimation with interrupted observations

within a stochastic setting. The sequential state estimation

algorithms in both cases are developed using a Bayesian approach. To

the best of the authors' knowledge, the problem of observability

under persistent and random loss of data has not been studied

before.

This appendix introduces the concept of extended observability under

recurrent loss of data where the state vector has to be

reconstructed from an ensemble of sensor data at non-consecutive

samples. Given that the computer network is designed to keep the

probability of losing more than m data in every set of (v+m)

successive data less than an a priori prescribed bound _ , the problem

is to establish test criteria for observability (reachability) under

52



this condition, u is the observability (reachability) index, and m

is known as a function of p and u. A fixed-size window of (u+m) data

from the available collection is considered for each observation,

and sample numbers of the missing data are routinely recorded by the

computer network protocol. This concept is different from that of

extended observability with unknown inputs, for example, Basile and

Marro [37], Emre and Silverman [38], Kudva et al. [39], Molinari

[40], and Rappaport and Silverman [41].

The extended observability can be determined by testing the rank of

every possible matrix associated with an augmented set of output

data arising from each possible combination of data loss. Although

this test is exhaustive, it is time-consuming, in general, and could

lead to incorrect conclusions due to computational inaccuracy. An

alternative approach for determining extended observability in the

single-output case is presented. The relevance of the work reported

in this appendix is summarized below:

0 A necessary and sufficient condition for extended observability which can be expressed via a
recursive relation.

o Necessary conditions (for the above) that are related to the characteristic polynomial of the

state transition matrix in a discrete-time setting, or of the system matrix in a continuous-time
setting.

o A system-theoretic approach for having an insight into the problem of loss of observability.

A.I. Extended Observability: Concepts and Test Criteria

Let the plant be represented by a discrete-time, linear, time-

invariant model in a deterministic setting at the sampling instant k
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x(k+l) = A x(k) + B u(k); z(k) = C x(k) (A-l)

where the state vector xeRn, the input vector ueRr, the output

vector zeR p, and the constant matrices A, B, and C are of

compatible dimensions. Furthermore, rank of C is p and the pair

(C,A) is observable with observability index u. Then,

J -iAix(k+j) = A j x(k) + _ B u(k+j-l-i) (A-2)

i=0

Defining y(k+j)= CAJx(k), it follows from (A-l) and (A-2) that

j -i Ai
y(k+j) = z(k+j) - _ C S u(k+j-l-i) (A-3)

i=0

The modified output vector sequence (y(k)} can be used for state

reconstruction in lieu of {z(k) } provided that the input sequence

{u(k)} is available. (Observability with unknown inputs [37,41] is

not addressed here.) Under normal circumstances, the state x can be

reconstructed from u consecutive sets of outputs. However, in the

event of loss of outputs, y(k) is not available at every k. The

problem is to determine whether the state x(k) can be reconstructed

by selecting any _ output vectors from the collection ym(k) of (u+m)

output vectors as defined below. (Note: ym(k) may also be viewed as

a (p(u+m)×l) vector.)

ym(k) = [y(k) T ly(k+l) T ly(k+2)T I ... ly(k+u+m-l)T] T

where m is a fixed finite integer.

De[inition A.I: The system in (A-I) is said to be m-observable if x(k) can be reconstructed from any

u distinct vectors in ym(k). •
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We now elucidate the concept of m-observability by second order,

single output systems which are observable but not m-observable.

Example A I: Let A and c be defined as follows.

i --i _

"0

Given A =

1 0

E:ocA -i

On the other hand, cA 2 = [-I

and c = [i 0], the observability matrix

implies that the pair (c,A) is observable.

0] = --C.

The system is not 1-observable and hence, cannot be m-observable,

mal. From a geometric point of view, A is a 90 ° rotation matrix

implying that cAl+2=-cA l for I=0,I,2,3 .... •

Example A.2: Next we consider a 120 ° rotation matrix so that

-i/2 -_3/21
A = ; C = [i 0].

V3/2 -I/2

This system is 1-observable but not m-observable, mz_2. •

Next we proceed to determine the conditions for m-observability. The

following relationship between ym(k) and x(k) is derived from (A-l),

(A-2) and (A-3).

ym(k) = Qx(k)

where Q = [O T I emT]T which is a (p(_+m)xn) matrix,

O = [(CA0) T I (CAI)T I .... I (CAU-I)T] T, and

Om= [(CA_) T I (CAU+I)T I "'" I (CAV+m-I)T] T

(A-4)
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We now establish a simplified necessary and sufficient condition for

m-observability.

Proposition A.I: The system described in (A-I) is m-observable in the

single output case (i.e., C is a ixn

-I
minors of e e

m
are non-zero.

row vector c and u=n) iff all

-i
Proo/: It suffices to show that an arbitrary set of n rows from Qe

-I
contains linearly independent vectors iff all minors of e 8

m
are

non-zero. Consider the (n+m)xn matrix

Qe n I n is the (nxn) identity matrix and V=emO-i (A-5)

Let us choose any (n-k) rows from I n and any k rows from V. If k=0,

or k=n for man, this proposition automatically holds. Therefore, we

consider Isk<n. Let U represent the (n-k)-dimensional subspace

spanned by the (n-k) rows selected from In and let W represent the

subspace spanned by the k rows selected from V. First suppose that

all minors of V are non-zero. Having all k-th order non-zero minors

implies that any k rows are linearly independent and each linear

combination of these rows must have fewer than k zero elements,

i.e., more than (n-k) non-zero elements. Therefore, dimW=k and

WnU={0}. Consequently, any n rows of Qe -I are linearly independent.

This establishes sufficiency. Next suppose that V contains a zero

minor of order k. Then it is possible to construct a linear

combination of these rows with at least k zero elements. Such a

vector can be expressed as a linear combination of (n-k) rows of I n .
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Therefore this collection of k+(n-k)=n rows of QO-I does not form a

linearly independent set. This establishes necessity• •

Next we relate certain properties of the matrix A in (A-I) to m-

observability for the single-output case.

Observatiot_ A.I: The matrix 8me-I is completely determined by the

coefficients of the characteristic polynomial of A. This can be seen

-I
by expressing em8 as follows•

-I
8 e
m

where

= [(cAn) T (cAn+l) T ..... (cAn+m-l)T] T 8-i

= [(cAne-l) T (cAn+le-l) T .... (cAn+m-le-l)T] T

= [(ce-leAne-l) T (c8-1eAn+le-l) T .... (ce-18An+m-le-l)T] T

= [(cAn) T (cAn+l) T ....... (¢An+m-l)T] T (A-6)

A = 8A8 -I and c = ce -I. •

This represents a similarity transformation

observability canonical form [26] as follows•

into the standard

where A =

0 1 0 .... 0"

0 0 i .... 0

: :

0 0 0 ... 1

-a 0 -a 1 -a 2 ... -an_ 1

, and c = [i 0 0 ... 0] (A-7)

Therefore (A-6) depends only on

characteristic polynomial of A. •

the coefficients of the
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Observation A2: Following (A-6) and (A-7) in Observation A.I, the first

row of Om 0-I is [-a 0 -a I ... -an_l]. By Proposition A.I, a

necessary condition for m-observability, m__l, is that all ixl minors

of OmO-1 be non-zero. This implies that each coefficient of the

characteristic polynomial of A must be non-zero for m-observability,

m> 1. •

Observation A.3: The characteristic polynomial of A in Example A.I is

A2+I, i.e., al=0. Therefore, the system is not m-observable Vm>l.

But, the characteristic polynomial in

implying that the necessary condition

satisfied. •

Example A.2 is A2+A+I,

for m-observability is

Observation A 4: The degree of m-observability is common to all

observable pairs that share the same state transition matrix. That

is, if 3 c" such that (c",A) is m-observable, then (c,A) is m-

observable for each observable pair (c,A). The reason for the above

is that the output vector c is only required to establish the

invertibility of O, i.e., observability. On the other hand, given

that O -I exists, O 0 -I depends solely on the coefficients of the
m

characteristic polynomial of the A-matrix. •

The test procedure in Proposition A.I requires computation of the

matrix V=O O -I We now show how the coefficients of the mxn matrix V
m

can be recursively computed. From (A-6) and (A-7) it follows that

the coefficients of V can be expressed as

V(i,j) = V(i-l,j-l) - v(i-l,n) aj_ 1 for l_<i_<m and l_<j_<n
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by setting the initial conditions V(.,0)=0 and V(l,j)=-aj_ 1 • Then,

n-I
V(i,n) = v(i-l,n-l)-V(i-l,n)an_ 1 = -_ akV(i-n+k,n)

k=0

Defining Vi = v(i,n), the above equation can be expressed as

n-i
Vi = -_ akVi_n+ k for i>_n

k=0
(A-8)

The range of Vi in (A-8) can be extended by using the relationship

V1 = -an_ 1 and defining V 0 = 1 and V i = 0 for i<0 as follows.

n-I

V i = -_ akVi_n+ k for i>_l (A-9)
k=0

Using (A-6) and (A-7) the i-th row of V

[V(i,l) V(i,2) ... v(i,n)] = cA n-l+i

can be expressed as

for i>_l (A-10)

cA n+i, for i_>0, can
Hence, from (A-10)

be expressed as

and (A-f1) ,

cAn+i= -[a 0 a I ... an_ 1 ]

where V. =
1

it follows that

V i Vi_ 1 -.

0 V i ..

• : ..

• : ..

0 0 .-

0 for i < 0

1 for i = 0

n-I

-_ akVi_n+ k • for i > 0
k=0

V.
i- (n-l)

V.

V,

i

(A-ll)

Extended observability is critical for design of networked control

systems [11-13] especially if the plant under control is unstable in

the open loop. This concept is also applicable to bad data
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suppression [42] that may lead to random rejection of signals in

feedback control systems.

A natural extension of the reported work is to establish test

conditions for extended observability in multiple-output systems.

This requires the loss of data to be considered from two different

perspectives: Case I: The block of data containing the (pxl) output

vector z(k) is unavailable; and Case 2: Only certain elements of z(k)

are unavailable at the instant k while the remaining elements could

be used for state reconstruction. In the latter case identity of the

unavailable outputs may vary with k.
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APPENDIX B

Lemmas for Proposition 3.1

This Appendix presents the four lemmas that are necessary to derive

the delay compensation algorithm in Proposition 3.1 in Section 3.

r-2

Lemma B.I: Zklr = Zkll - _ AILk-i-iCek-i-I for r__2 (B-l.l)
I [ i=0

Proof: The proof of lemma B.I requires lemmas B.2, B.3, and B.4. We

also introduce a definition that will be required to establish

recursive relations in the lemmas.

De [inition B. 1 :
fk := Zk[l ' gk := Zk[2

G(k,j) :=

J_Aigk_i+l
i=0

for kz_j_>l

0 otherwise

i A i for ka_jzl

i_ 1 fk-i+l

F (k,j), :=
0 otherwise m

By use of Definition B.I and lemma B.2, it follows that

= G(k-l,r-l) - F(k-l,r-2) (B-I.2)
Zklr

Using the expression for G(.,.) in Definition B.I in conjunction

with lemma B.3, i.e., the equation (B-3.1)), we have

- =r_2 AiG(k-l,r-1) =r_2Aigk_i (fk-i
i=0 i=0

- Lk_i_iCek_i_l )

r-2 i r_2 .
= _ A fk-i - _AiLk-i-iCek-i-I
i=0 i=0

(B-I. 3)
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Using the expression for F(.,.) in Definition B.I in conjuction with

(B-I.3), it yields

r-2 .

G(k-I r-l) = fk + F(k-l,r-2) - _ AiLk i 1 Ce" ' "t -- -- ]_--l--I
i=0

(B-I. 4)

The proof follows by substituting (B-I.4) and the expression for fk

(from Definition B.I) in (B-I.2). •

Lemma B.2: Following Definition B.I,

Zk+ll r = G(k,r-l) - F(k,r-2)
(B-2. i)

P,o0/: The identities G(k,l)=gk+ 1 and F(k,0)=0 are obtained from

Definition B.I, respectively. Using (B-I.2) in conjunction with

these identities yields

Zk+ll 2 = G(k,l) - F(k,0)
(B-2.2)

Using (3-3) from Section 3 with r=3 and r=2 and subtracting

zk+ll3 - zk+ll2 = A(Zkl2 - ZklI) (B-2.3)

Using lemma B.3 and (B-2.2) in (B-2.3)

Zk+ll3 = G(k,l) - F(k,0) + A(g k - fk)

= (G(k,l) + Agk) - (F(k,0) + Afk)

= S(k,2) - F(k,l) (B-2.4)
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The method of induction is now used to complete the proof

Proposition 3.1. Using (3-3), as in (B-2.3), results in

of

Zk+llr+ 1 - Zk+ll r = A(Zkl r - Zklr_ I)
(B-2.5)

substituting (B-2.1) in (B-2.5)

= A[G(k-l,r-l) - F(k-l,r-2) - G(k-l,r-2)
Zk+l I r+l-Zk+l I r

+ F(k-l,r-3) ]

= A[G(k-l,r-l)-G(k-l,r-2) ]-A[F(k-l,r-2)-F(k-l,r-3) ]

Setting j=r-i in (B-4.1) of lemma B.4 and similarly j=r-2 in (B-

4.2), and then substituting these results in the above equation, we

obtain

= [G(k,r) - G(k,r-l)] - [F(k,r-l) - F(k,r-2) ]
Zk+ll r+l-Zk+l I r

= [G(k,r) - F(k,r-l) ] - [S(k,r-l) - F(k,r-2) ] (B-2.6)

Using (B-2.1) in the right hand side of (B-2.6) yields

Zk+llr+ 1 = G(k,r) - F(k,r-l)

Lemma B.3: Zk 12 = Zk II - Lk-iCek-i
(B-3. i)

or equivalently, gk = fk - Lk-ICek-I
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Proof: From (3-1), (3-2) and (3-6) in Section 3, it follows that

Zkl 1 = AZk_ll 1 + BUk_ 1 + Lk_iCek_ 1 (B-3.2)

Also, using (3-3), we have

Zkl 2 = AZk_ll 1 + BUk_ 1 (B-3.3)

The proof follows by substituting (B-3.2) in (B-3.3).

Lemma B.4:

G(k,j+l) - G(k,j) = A[G(k-I,j) - G(k-l,j-l)] (B-4. I)

F(k,j+l) - F(k,j) = A[F(k-I,j) - F(k-l,j-l)] (B-4.2)

Proo[ :

G(k, j+l)-G(k, j) = _ i j-i i "
i=O A gk-i+l - _" A gk-i+l = A3gk-j+li=0

(B-4.3)

j-i i

G(M-I,j)-G(k-I,j-I) = _ A gk-i -
i=0

j-2 i "-

A gk-i = A] igk-j+l
i=0

(B-4.4)

(B-4.1) is obtained by substituting (B-4.4) into (B-4.3). The proof

of (B-4.2) follows a similar procedure. •
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APPENDIX C

Stability of the Delay-Compensated System

This appendix discusses stability of the delay-compensated system in

presence of plant modeling errors, as described by (4-15) and (4-16)

in Section 4. The objective is to outline an approach for

determining a sufficiency condition for stability of the time-

varying systems in (4-16) and (4-18).

In this sequel we select a norm of the nominal matix V such that

this norm is close to the spectral radius of V. Thus, if the

uncertainty is zero, i.e., 6V=0, a measure of stability margin is

provided by this norm that would be close to that of an eigenvalue

test. This provides a necessary and sufficient condition for

stability of linear time-invariant systems.

Given a matrix V6R nxn and any E>0 there exists a norm [I'Jl,, which is a

function of both V and e such that p(V)<IIVII,_p(V)+_ where p(V) is the

spectral radius of V, i.e., the magnitude of the largest eigenvalue

[43]. The norm is obtained as follows.

Transform V into its Jordan form J such that V = pjp-1 where P is an

appropiate transformation matrix. Construct a diagonal matrix D

with the i th diagonal element equal to i-i 0<i<n, and let Z = PD.

The desired norm is IIVII, = IIZ-IvzII_, that is, the infinity norm of

transformation D-IJD. Therefore,

65



n ej -i
IIV II. =max _ IJijl

i j=l

(c-i)

The above equation circumvents the problem of matrix inversion for

large n and small _.

It follows that if p(V)<l we can select a small _ and use the

following inequality to obtain a test for closed loop stability

rlxk+1II.= II(v+6v (k))Xkll. -< iiv+6v (k) II. IIXkII. (C-2)

= and Z'IVZ is a constant matrix,
since [[V+6V (k)[[, UZ-IVZ+Z-16V (k) Z IIoo

the computation burden is on calculating Z-*6V(k)Z only.

The selection of the norm II'II, is an attempt to reduce the amount of

conservatism that is inherent in norm tests such as those using the

natural norm. Indeed, it is possible for a matrix with spectral

radius smaller than one to have an Euclidian norm, or any other

standard norm, greater than one. In addition, the set

E, = {fl: IIv÷nll, < 11
(C-3)

constitutes a region in R "×" such that if 6V(k)_E, for all k, then

the control system described in (4-I)-(4-4) is stable. However, it

should be noted that that 0<_iS_ 2 does not necessarily imply that

E(V,_2) is contained in E(V,_ I) or vice versa.
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